Kinematics of the ribbon fin in hovering and swimming of the electric ghost knifefish.

نویسندگان

  • Ricardo Ruiz-Torres
  • Oscar M Curet
  • George V Lauder
  • Malcolm A Maciver
چکیده

Weakly electric knifefish are exceptionally maneuverable swimmers. In prior work, we have shown that they are able to move their entire body omnidirectionally so that they can rapidly reach prey up to several centimeters away. Consequently, in addition to being a focus of efforts to understand the neural basis of sensory signal processing in vertebrates, knifefish are increasingly the subject of biomechanical analysis to understand the coupling of signal acquisition and biomechanics. Here, we focus on a key subset of the knifefish's omnidirectional mechanical abilities: hovering in place, and swimming forward at variable speed. Using high-speed video and a markerless motion capture system to capture fin position, we show that hovering is achieved by generating two traveling waves, one from the caudal edge of the fin and one from the rostral edge, moving toward each other. These two traveling waves overlap at a nodal point near the center of the fin, cancelling fore-aft propulsion. During forward swimming at low velocities, the caudal region of the fin continues to have counter-propagating waves, directly retarding forward movement. The gait transition from hovering to forward swimming is accompanied by a shift in the nodal point toward the caudal end of the fin. While frequency varies significantly to increase speed at low velocities, beyond approximately one body length per second, the frequency stays near 10 Hz, and amplitude modulation becomes more prominent. A coupled central pattern generator model is able to reproduce qualitative features of fin motion and suggest hypotheses regarding the fin's neural control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.

The maneuverability demonstrated by the weakly electric ghost knifefish (Apteronotus albifrons) is a result of its highly flexible ribbon-like anal fin, which extends nearly three-quarters the length of its body and is composed of approximately 150 individual fin rays. To understand how movement of the anal fin controls locomotion we examined kinematics of the whole fin, as well as selected ind...

متن کامل

Biomimetic and bio-inspired robotics in electric fish research.

Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and b...

متن کامل

Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.

South American electric knifefish are a leading model system within neurobiology. Recent efforts have focused on understanding their biomechanics and relating this to their neural processing strategies. Knifefish swim by means of an undulatory fin that runs most of the length of their body, affixed to the belly. Propelling themselves with this fin enables them to keep their body relatively stra...

متن کامل

Undulating fins produce off-axis thrust and flow structures.

While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater veh...

متن کامل

Biomimetic Motion Planning of an Undulating Robotic Fish Fin

This paper presents a locomotion control implementation of a robotic system mimicking the undulating fins of fish. To mimic the actual flexible fin of a real fish, we created a ribbon fin type actuation device with a series of connecting linkages and attached it to the robotic fish. By virtue of a specially designed strip with a slider, each link is able to turn and slide with respect to the ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 216 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2013